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Synopsis 

An empirical model has been developed to relate molecular weight distribution to the shear 
dependence of the steady shear viscosity in high-density polyethylene melts. It uses a molecular 
weight, M,, which partitions molecular weights into two classes; those below M, contribute to the 
viscosity as they do at  zero shear, and those above M, contribute to the viscosity as though they 
were of molecular weight M, at zero shear. Each individual molecular weight species contributes 
on the basis of its weight fraction. M, is proposed to be a unique function of the shear rate. 
Using this method of treating the molecular weight distribution, and the zero shear relation for 
relating 90 to molecular weight, the calculated steady shear viscosities a t  various shear rates for 
polyethylene samples of widely varying polydispersities agree well with experimental results. 
The model makes no judgment on the existence or importance of entanglements in non-Newto- 
nian behavior since it has no specific parameters involving an entanglement concept. Use of the 
model suggests that for the samples studied, only the upper portion of the molecular weight dis- 
tribution contributes toward the experimentally observed decrease of steady shear viscosity with 
shear rate for shear rates of up to 10,OOO sec-l. The lower molecular weight species are assumed 
to behave in a Newtonian manner. 

INTRODUCTION 

Numerous theories14 have been advanced to account for the shear depen- 
dence of the viscosity in polymer melts and solutions. One of the most suc- 
cessful of these theories is that of Graessley,l in which the decrease in viscosi- 
ty with shear rate is ascribed to a decrease in the entanglement density as a 
function of shear rate. Graessley assumes a relation between the time neces- 
sary for molecular rearrangement (related to the Rouse relaxation time5) and 
the time available (related to shear rate) as molecules move relative to one 
another. A recent papel.6 has shown that this theory can be applied toward 
broad molecular weight materials, if the flow curve is somewhat arbitrarily 
shifted along the shear rate axis to obtain a good fit. 

In this paper, a different approach is outlined. Rather than relating relax- 
ation times to the flow curve, molecular weight is related directly to the ob- 
served decrease in the steady shear viscosity with shear rate. This approach 
is shown to account successfully for the non-Newtonian behavior of various 
high density polyethylene melts of widely varying polydispersities. 

EXPERIMENTAL 

Rheological data were obtained at  190°C using an Instron rheometer with 
capillaries having an LID of 33:l. Rabinowitsch corrections were applied to 
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the resulting data. Only data obtained before the onset of unstable flow are 
reported here. 

The gel permeation chromatographic (GPC) data were obtained at  135OC 
with trichlorobenzene as solvent on a Waters Model 200 instrument having 
four Styrgel columns of porosities lo6, lo5, lo4, and lo3 A. The instrument 
was calibrated with commercially available polystyrene standards in a modi- 
fication of the universal calibration procedure. The modifications were 
judged necessary because of the uncertainty in the Mark-Houwink relation 
for monodisperse polyethylene fractions and in the uncertain applicability of 
the universal calibration procedure to the lower molecular weight end of 
broad-MWD polyethylenes. The modifications involved the linear extension 
of the universal calibration curve below polystyrene molecular weights of 
50,000 and the subsequent empirical generation of self-consistent values for k 
and a in the Mark-Houwink relation for monodisperse polyethylene fractions 
by the following procedure. 

The k and a values were generated by finding a best fit by means of an iter- 
ative procedure for k and a from the following equations: 

and 

= [&w = kKM#+a 
where Wi and Mi are the weight fraction and molecular weight, respectively, 
of the ith component in the whole polymer; and f(Vi) is the elution volume 
relation to the hydrodynamic volume [&Mi in the universal calibration pro- 
cedure. This is similar to the procedure of Ram and Miltz7 used for long- 
chain branching, except that b and c are constrained to zero. The empirical- 
ly determined Mark-Houwink relation found from this procedure was [q] = 
3.85 X 10-4M0.72. This relation is in good agreement with that obtained by 
the National Bureau of Standards (NBS) using narrow fractions of [q] = 3.92 
X 10-4M0.725. Using the above Mark-Houwink relation and the universal 
calibration curve to calculate molecular weight averages for the NBS 1475, 
good agreement for Mw and Mn with NBS were obtained, as indicated in 
Table I. 

The linear extrapolation of the universal calibration curve appeared valid 
because of (1) the good agreement for M n  with NBS and (2) the elution vol- 
umes for C40 (n-tetriacontane) and a 2000 molecular weight linear wax (mo- 

TABLE I 
Sample Identification 

- 
Sample M W  f i w i f i n  f i z m w  

A 204,000 12.2 9.6 
B 175,000 11.3 8.8 
C 75,000 5.7 5.9 
D(NBS 1475 Standard) 56,000( 54,200)a 2.9(2.96)a 3.1 
E 157,000 15.9 11.5 
F 102,000 13.6 13.6 

a The values in the parentheses are values for M, and f i w / f i n  obtained by NBS. 
G 212,000 24.8 9.7 
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lecular weight as determined by vapor pressure osmometry) were in agree- 
ment with those predicted by the extrapolated curve. 

The high-density polyethylene samples used in this study were selected to 
represent extremes in molecular weight distributions and were produced by 
various commercial and experimental processes. The MWD data are given 
in Table I for these samples. 

MODEL DEVELOPMENT 

Monodisperse Case 

A simplified view of the dependence of the steady shear viscosity on shear 
rate for monodisperse polymers is depicted by the solid lines in Figure 1. 
This idealized case is shown in the Appendix to be relatable to the master 
curves for narrow-MWD polystyrenes by Graess1ey.l Experimentally, the 
shear rate for the onset of non-Newtonian behavior is not so well defined. 
'The more gradual transition from Newtonian to non-Newtonian flow that is 
usually found for narrow-MWD polymers is depicted by the dashed line. 
However, let us assume for the time being that the simplified case represent- 
ed in Figure 1 adequately approximates the behavior of monodisperse poly- 
mers of varying molecular weight. 

It has been shown* that the zero shear viscosity qo is related to molecular 
weight by qo = &fa, where a * 3.36 for narrow-MWD polyethylene samples 
having molecular weights exceeding approximately 4000. In view of this re- 
lationship the simplified case presented in Figure 1 implies that at  any shear 
rate +, there exists a unique value of the molecular weight, Mc, having a zero 
shear viscosity ( q o ) ~ ,  such that all molecules having molecular weights M 
greater than Mc will be undergoing non-Newtonian flow and all samples hav- 
ing molecular weights less than Mc will be in a Newtonian region. Further, 
from Figure 1, 

V M  = (volMc = kM,* for all M L M ,  > 4000 
and (1) 

V M  = ( ~ 0 1 ~  = k,M* for all 4m < M < M,. 

LOG (9, poise ) 

LOG ( p ,  SBC -1) 

Fig. 1. Double logarithm plot depicting the idealized relation between the steady shear viscosi- 
ty q and shear rate for three monodisperse polyethylenes of molecular weights MI, Mz, and M3, 
and zero shear viscosities ( v o ) ~ ,  ( v o ) ~ ,  and (1)0)3, respectively, where MI > M2 > MB. 
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The ( ~ o ) M ,  will vary with +, as shown by the heavy line, which is also the 
power law relation between q and + for all M > M,. M,  varies with shear rate 
as [ ( q ~ ) ~ , / k ]  lIa varies with +. 

In essence, therefore, M, acts as movable partition, depending solely on 
shear rate, that partitions molecular weights into two classes: those acting in 
a Newtonian fashion for molecular weights below M,, and those undergoing 
non-Newtonian flow and giving a viscosity equivalent to a zero shear viscosity 
of a lower molecular weight material having a zero shear viscosity ( ~ 0 0 ) ~ ~ .  

Polydisperse Case 

To calculate the steady shear viscosity at  any shear rate for broad-MWD 
polymers, the relation between zero shear viscosity and molecular weight will 
be assumed to be known, adequately accounted for by current theories, and 
valid for any nonzero shear rate. An empirical relationship for polyethylene 
at 190°C reported8 in the literature will be used: 

log qo = -a&$ + 3.36 1% M ,  + qql log (rnZ/rn,~ 02) 
This relationship, which is quite close to theoriesgJO predicting the variation 
of qo with the 3.4 power of Mw for narrow fractions, was obtained using both 
fractions and polydisperse linear polyethylenes. 

As with the monodisperse materials already discussed, there will be as- 
sumed to exist at any shear rate a maximum molecular weight M,, below 
which molecules contribute to the viscosity as they normally would. For M 1 
M,, a molecule will contribute to the viscosity in proportion to its weight frac- 
tion as though its molecular weight were M,. This partition will be assumed 
to be independent of the molecular weight or the MWD of the sample as a 
whole. Consequently, the steady shear viscosity at any shear rate can be ex- 
pressed as 
log qo = -lBM + 3.36 1% Mw* + 

Q5it log “,M,)*/(M,)*I. (3) 
where 

and wi is the weight fraction of the ith component. In terms of the GPC 
data, the MWD is split into a histogram with rectangles of width AVi, of ylo 
count. As a result, wi as defined above is equivalent to 

m 

where hi is the peak height of the ith rectangle and AVi is the elution volume 
increment; Mi is determined from the universal calibration curve at the elu- 
tion volume Vi. From the experimental relation of v versus + and MWD 
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MOLECULAR WEIGHT 

Fig. 2. The effective molecular weight distribution at i. is depicted by the solid line, where M, 
is the partitioning molecular weight at i.. The dashed portion of the curve shows the actual high 
molecular weight portion of the molecular weight distribution as measured by gel permeation 
chromatography. 

data, eq. (3) is solved for M, as a function of + by the use of an interval halv- 
ing computer program. 

In effect, this model assumes the validity of the zero shear relation between 
viscosity and molecular weight, except that at nonzero shear rates an effective 
MWD as defined by the partition functions given above is used. An example 
of a modified MWD is illustrated in Figure 2. This application of character- 
istics of monodisperse materials to the polydisperse case has been used by 
Middleman,2 although the basic assumptions appear to be quite different. 

RESULTS AND DISCUSSION 

Three criteria are used to judge the success of the assumptions of applying 
the approximate relations for monodisperse samples to polydisperse materi- 
als. First, and most important, samples of varying MWD's should give the 
same relationship of M, to +. Second, it should be possible to use the empiri- 
cal relationship of M, with + to obtain the approximate power law relation,l' 
q = A;/-o.80, through the relation q = kM,3.36 (i.e., since for monodisperse 
materials, the power law relation is interpreted as just the variation of M,3.36 
with +). Third, the molecular weight dependence of the longest relaxation 
time should be able to be predicted from the model. 

Prediction of Steady Shear Viscosity 

Figure 3 contains the results of the calculation of M, from both the rheolo- 
gy and GPC data for samples A through D, which represent widely varying 
polydispersities. The relations between M, and + for the four samples ap- 
pear to be in very good agreement, especially considering the application of a 
specific literature relationship of melt viscosity to the molecular weight data 
given here. Consequently, we shall consider the line drawn in Figure 3 to be 
applicable for any linear polyethylene regardless of polydispersity. 

Figures 4a and 4b show the predicted and experimental viscosities as a 
function of shear rate for samples A through D. The predicted viscosities 
were obtained by using M, (as obtained from Fig. 3) and the experimental 
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MWD data to predict the viscosity from eq. (3). By use of this method, the 
melt viscosity of any HDPE sample should be predictable at any shear rate 
from the MWD data alone. 

Figures 4c and 4d contain experimental and predicted data on HDPE sam- 
ples E through G. Again, the agreement between the predicted and experi- 
mental viscosities appears to be quite good for all the samples, even though 
Figure 3 was obtained from samples A through D, which have vastly different 
MWD’s from samples E through G. It is regrettable that lower shear rate 
data using a cone-and-plate viscometer were not available. However, be- 
cause an experimentally determined relationship between zero shear viscosity 
and molecular weight was used as a starting point, the extremely low shear 
rate application of the relationship should be the most reliable. 

9 
(poise) 

P ( a - 1 )  

(a) 
Fig. 4. continued 
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10-1 100 lo1 102 lo3 

(d) 
Y(sec-1) 

Fig. 4. Apparent viscosity q as a function of shear rate. The experimental curves are depicted 
by the solid lines and the calculated values for q are given by the O’s, 0 ’ 8 ,  A’S; (a) Sample A (0) 
and Sample C (0); (b) Sample B (0) and Sample D (0); (c) Sample E (A) and Sample F (0); (d) 
Sample G (0). 
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This model also offers some insight into just what part of the MWD con- 
tributes to the observed change of viscosity with shear rate. Figure 3 indi- 
cates that molecular weights up to 40,000 are still apparently in a Newtonian 
region at  10,000 sec-l. Consequently, from Figure 2, it is seen that the func- 
tional decrease of 9 with shear rate up to 10,000 sec-l has been governed al- 
most completely by the upper portion of the MWD; the lower portion of the 
MWD contributing mainly through the weight fraction term as a diluent. 
This conclusion was found to be valid for samples A through G from a consid- 
eration of the MWD curves. 

Prediction of the Onset of Non-Newtonian Flow 

The “partition” model presented here predicts that the viscosity will be 
Newtonian at shear rates such that the largest molecular weight species does 
not exceed M,. By extrapolating the relation given in Figure 3 to lower shear 
rates, and noting the largest observable molecular weight present in the 
MWD from GPC, the shear rate for the onset of non-Newtonian flow can be 
predicted. This has been done and the results are given in Table 11, together 
with the values as estimated from rheological data. The estimated onset of 
non-Newtonian flow from rheological data was obtained using the extrapola- 
tion procedure of Spencer and Dillon.12 As can be seen from Table 11, the re- 
sults are surprisingly good considering the extrapolation used for the rheolo- 
gy data. However, the extrapolation in the case of the NBS 1475 sample is 
probably the most accurate since the extrapolation involves an extrapolation 
less than one decade in shear rate. 

The Power Law Relationship 

This model implies that the power law region is just the variation of M, to 
the a power (i.e., ?/k) with 4 for a sample in which all molecular weights ex- 
ceed M,. However, the plots in Figures 2 and 3 show that the true power law 
region is not predicted for all but the narrowest MWD’s; some molecules in a 
broad-MWD material are still smaller than &‘a t  shear rates as large as 
10,000 sec-l, and they are consequently not following the predetermined de- 
crease in viscosity that molecules larger than M, are. From the slope in Fig- 
ure 3 and eq. (l),  the exponent in the power law relation between 9 and i. is 
calculated to be - 1.055 when the smallest molecular weight in a sample is 

TABLE I1 
Estimated Versus Calculated Shear Rate for the Onset of Non-Newtonian Flow 

Sample 

Predicted shear Estimated shear 
rate for the onset 

of non-Newtonian flow 
from molecular weight 

rate for the onset 
of non-Newtonian flow 
from extrapolation of 

distribution, sec-’ rheological data, sec-’ 

A 2 x  l o +  IX 10-4 
B 1 x 10-3 3 x  10-3 
D(NBS 1475 Standard) 4 x  10’’ 5 x  l o - ’  
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larger than M,. This calculated value for the exponent is within experimen- 
tal error the same as the theoretical limit of -1.0, although this limit is prob- 
ably experimentally unattainable. The idea of a limiting value of -1.0 for 
the power law exponent, in which the shear stress approaches a constant 
value, is in agreement with that predicted from the theory of Williams13 for 
monodisperse concentrated solutions. However, this exponent is significant- 
ly less than the value of -0.80 as experimentally reported by Sabiall and that 
of -0.818 predicted by Graessley's the0ry.l 

A possibility which might account for the predicted power law exponents 
being larger than that experimentally observed is the crudeness of the as- 
sumption made from Figure 1 that the transition from Newtonian to non- 
Newtonian behavior is sharp for a monodisperse sample. For the case of a 
gradual transition, the viscosity contribution of a molecule in the transition 
region would be less than that predicted for the sharp transition illustrated in 
Figure 1. As a result, the calculated values of M, would tend to be larger at 
the high shear rates, where a proportionately larger weight fraction of mole- 
cules are affected resulting in a smaller predicted dependence of Q on + in the 
power law region would result. However, the quantitative effect on the 
power law exponent of substituting a gradual transition into the present 
model is not immediately apparent. 

Molecular Relaxation Times 

This model does not contain any explicit reference to molecular relaxations 
as do models duch as those of Rouse5 or Graessley.' However, the assump- 
tion of an upper limit to the effective molecular weight M, as a function of 
shear rate in the present model can be rationalized in terms of molecular re- 
laxations. The partitioning of the MWD into molecular weights that act in a 
Newtonian fashion and those that do not implies that the non-Newtonian 
group can no longer respond (or relax) within the time scale of the experi- 
ment (i.e., --k/+). Consequently, the partitioning molecular weight M, is the 
highest molecular height which can completely relax in the time allowed at a 
given shear rate. If it is assumed that the maximum allowed relaxation time 
is proportional to l/+, then it follows from Figures 1 and 3 that (1) the maxi- 
mum relaxation time allowed determines the effective molecular weight of 
molecules larger than M,, independent of the molecular weight or viscosity of 
the sample as a whole, and (2) the maximum allowed relaxation time at + will 
be proportional to MC3.l9. From the definition of M, as the largest molecular 
weight that can still relax fully at +, the maximum allowed relaxation time, 
K/+, corresponding to M, in Figure 3, is just the maximum relaxation time of 
a molecule of molecular weight M,. More generally, the maximum relaxation 
time for a molecule of molecular weight M is proportional to l/+ or, from Fig- 
ure 3, proportional to M3.19. This is in reasonable agreement with pub- 
lished14 experimental results for the relation between maximum relaxation 
time and the molecular weight of narrow-MWD melts and solutions where 
the 3.4 power relation is found. 

In contrast to this model, Graessley's theory assumes that at any shear 
rate, the maximum relaxation time is proportional to Q, which is a character- 
istic of the sample as a whole. However, because this model treats the sum- 

' 
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mation of individual molecular responses rather than the response of the as- 
semblage as a whole, the differences are somewhat hard to evaluate. 

Molecular Entanglements 

It is pertinent to note that the model presented here contains no parame- 
ters which directly relate to an entanglement factor. Although the treatment 
presented here neither proves nor disproves the concept of entanglements 
being the origin of non-Newtonian behavior, speculation regarding the physi- 
cal meaning of my “partition” model in terms of the entanglement model 
may be helpful. 

In the model presented here, M, is defined as the largest molecular weight 
that can undergo Newtonian flow at 4. In terms of the entanglement model, 
in which non-Newtonian flow is attributed to the inability to fully reentangle 
to an equilibrium situation, M, represents the largest molecule that can fully 
reentangle at a particular shear rate. Molecules larger than M, still reentan- 
gle, but to a reduced degree depending on the shear rate. These long mole- 
cules exhibit reduced drag forces due to the reduced entanglement densities. 

While the preceding rationalization of the “partition” model in terms of 
the prevailing entanglement concept gives a plausible mechanism, more ex- 
perimental data on other polymer systems are needed to more fully test and 
develop the present model. 

CONCLUSIONS 

The model presented here successfully predicts the observed non-Newto- 
nian decrease in steady shear viscosity with shear rate and the molecular 
weight dependence of the maximum relaxation time for a series of high-den- 
sity polyethylene samples of varied molecular weight distributions. 

No definitive judgment can be made from the model regarding the exis- 
tence or importance of entanglements in non-Newtonian flow since the gener- 
ality of the model precludes the precise assignment of mechanism. However, 
the presented model may disagree with one aspect of the entanglement theo- 
ry of Graessley in that the model indicates that the longest relaxation time al- 
lowed at  any given shear rate is dependent only on a given molecule’s molecu- 
lar weight, not on cummunal properties of the sample as a whole such as the 
sample viscosity. The maximum molecular relaxation time is predicted to be 
proportional to the 3.19 power of molecular weight. 

The presented model demonstrates that only the upper portion of the 
MWD contributes toward the experimentally observed non-Newtonian 
steady shearing flow for broad-MWD high-density polyethylene samples. 

Appendix 

The observation by Graessleyl that a master flow curve for narrow-MWD 
polystyrenes can be formed using as variables vlqo and 47012 may be shown to 
be an approximate restatement of Figure 1 from the following argument. 
From the master plot of Graessley, the following relation was found to hold 
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for any molecular weight sample undergoing non-Newtonian flow (assuming 
an infinitely sharp non-Newtonian transition): 

bgq - logqo = a log? + a  log70 + constant (4) 
where a was approximately -0.75 and TO approximately proportional to qdl4 
(A4 is the molecular weight and qo the zero shear viscosity). Assuming TO is 
proportional to M3.4, we obtain the relation 

log7 =-.% lag;/ + constant. 

This means that, at  shear rates above those where non-Newtonian flow be- 
gins for monodisperse samples of varying molecular weights, these samples 
will have flow curves in the power law region that are virtually superimposi- 
ble (i.e., the heavy solid line in Fig. 1). 

The author wishes to express his gratitude to W. W. Graessley and J. R. Knox for their critical 
comments and useful discussions. He would also like to acknowledge the computer program- 
ming assistance of E. Ziegel. 
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